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Abstract 
To significantly increase the scale and ensure long term viability of the decentralized networks              
user reward mechanics have to be implemented. Such mechanics motivate users to stay inside              
the system and contribute towards its success and expansion. While the nature and source of the                
reward can be implemented in a number of ways and is beyond the coverage of this paper, we                  
propose the model of the reward distribution among users of the decentralized network as well as                
the research of its properties and patterns. 

Introduction 
Encouraging user actions that contribute to the functioning and development of the network is one               
of the factors that ensure the network’s survival. The paper provides a network structure and               
reward distribution procedure that allow users to be rewarded according to their activity. The              
reward can be represented in a form of a certain valuable resource that is injected into the system                  
and then is distributed among the users. To prove the consistency of the proposed approach, a                
simulation model of the system is constructed. It is based on the graph theory concepts and                
reflects the alleged behavior of a real distributed reward system.  
 
In the constructed model the following is defined: 

● the nodes of the graph correspond to users of the network; 
● the edges of the graph reflect the relationships between users of the network;  
● the reward coming into the network is distributed through the edges of the graph. 

 
User reward mechanics should incentivize the activity of the users, which is necessary for the               
sustainable expansion of a decentralized network. We assume that the user activity in the system               
is defined by user operations which are either valuable to other users or valuable for the system                 
itself, such as an establishment of the relationships between other users [1]. We will talk about                
such network and its reward distribution system, users of which can be divided into the following                
three types: 

● users who are the sources of the reward; 
● users who are the recipients of the reward; 
● users who form relationships with other users and thus are intermediaries in the reward              

transfer. 



The main goal of the paper is to find patterns and dependencies between the structure of the                 
graph and the reward distributed to users. To achieve this, we created the network model with the                 
proposed configuration, in which the designed reward distribution approach was used. We            
implemented the simulation of the constructed model and finally performed a statistical analysis of              
the results obtained. 

1 Model Definition 
Let us be given a graph :(V , )G =  E  

 a set of nodes, ; V ī V| | = n  
a set of edges. E ī   

 
Nodes have one of three possible types (these types are determined based on the properties of a                 
decentralized reward distribution network). Accordingly, the set is divided into three mutually       V       
disjoint subsets ,  and  ( ).R A  S R ᴉ A ᴉ S = V  
Let us assume that   , , , then .r = R| | a = A| | s = S| | r + a + s = n  
For each edge ( ) holds: - belongs to the set or , – is an element of   , v v j1 

 j2 ҽ E   v j1 
      R   S   v j2       

the set  (or vice versa).A  
An example of such network is shown in Figure 1. 

 

 
Figure 1.  An example of the network 



In fact, the graph is bipartite [2]. One part includes the nodes of the set , the other - nodes of    G             A       
the sets  and .S R   
 
The nodes of the set are reward sources: a certain amount of reward, which is then distributed     R              
among the nodes of the network, periodically is injected into the system through the nodes of this                 
type. 
 
The graph is dynamic: 

● its state changes at discrete moments (called ticks); the state at any specific time is               
defined as the size of the reward received by this time from each node of the graph (at the                   
start time the reward of each node is equal to zero); 

      ● there is a reward distribution among the nodes of the graph: 
○ for this purpose one of the nodes is chosen at random from the set (let it be the              R     

node ); Probability of each node to be chosen is distributed uniformly (in the k              
general case this choice may depend on the parameters of the node of the set );R   

○ The node adds reward units in the system, which are distributed through the  k   z            
graph to other nodes (thereafter we shall say that the node is active in the current           k      
cycle). 

● the number of cycles is infinite. 

1.1 The procedure of the reward distribution 
The value is distributed among other nodes through the breadth-first search algorithm (BFS,  z             
wave algorithm): at first, the current node is considered, then sequentially its neighbors are       k        
considered, and then the neighbors of its neighbors are considered and so on [4]. 
 
The general algorithm of reward distribution is as follows. 
 

1. Initialization:   =V 1 : {k} = V =V 2 :  3 : ׆  
2. Define set  as neighbours of  the nodes of the excluding nodes from V 2 V 1 V 3  
3. If  then end׆V 2 =   

            else 
3.1. = VV 3 :  3 ᴉ V 1   
3.2. Determine reward of the nodes of the set V 2   
3.3. Determine the reward size to be distributed through the nodes of the set V 2  
3.4.  , GOTO 2=V 1 : V 2 =V 2 : ׆ .  

 
Let us define immediate neighbors of the node as the first wave, the neighbors of these        k          
neighbors will be called the second wave (excluding ) and so on.k  
 
Taking into account properties of the set , using the BFS algorithm:E  



● the set   of the odd wave includes the nodes of the set  ;V 2 A  
● the set  of the even wave includes the nodes of the sets  and .V 2 R S  

Fig.2 illustrates how the algorithm works and shows  set on the first two iterations.fV 2   

  

a) Source graph b) Active node 

  

c) Nodes of the first wave d) Nodes of the second wave 

 
Figure 2. The waves of the nodes in the reward distribution 

 



1.1.1 Reward calculation procedure 
Let's take a look on how reward is calculated in detail (step 3.2 and 3.3 of the general algorithm of                    
reward distribution).  
Parameters of the procedure: 

● - is a fraction of the undistributed reward, which is distributed between  (0 )Ŭ < Ŭ < 1              
nodes of the current wave (the value  depends on the type of the nodes rewarded);Ŭ  

●  - is a fraction of the reward that is passed through the graph further.ɓ = 1 ī Ŭ  
 
This procedure will be illustrated on a graph shown in Fig. 2. 

1) Through the active node amount of reward equal to is injected into the network,    k ҽ R       z       
which is then distributed through the edges. In the context of this procedure we will               
consider edges direction to be the same as reward distribution direction.  

 
2) For outgoing edges from  node further distributed reward size   equalsk wk,vj

 

, where  is  node degree, , - set of /deg(k), (k, )wk,vj
= z  vj ҽ E   eg(k)d k eg(k)d = V|| 2

|
| V 2 k  

node neighbours. 

 
 
 

3) For each node   reward size is defined as a fraction (equal to ) of total rewardv ҽ V 2 wv Ŭ  
coming through a corresponding edge:  w .wv = Ŭ k,v  



 
 
 

4) Then for node  outgoing reward size equals to .v ҽ V 2 ɓwv  
 
 

 
 
 
 

5) For each outgoing edge from  further distributed reward size is defined as:v ҽ V 2  
,/c (v)ɓwv out  

            where   - number of outgoing edges from the node .(v)cout v  
 



 
 

6) In general case reward of the node  in some arbitrary BFS wave equals to:v ҽ V v = )( / k  

= ,wv Ŭ ×
c (v)in

j=1
wv ,vj  

where  - number of incoming edges to node ,(v)cin v  
 -  reward size that is transferred through edge wv ,vj v , ), j , .., (v).( j v  = 1 . cin  

 
Reward that is transferred through each outgoing edge equals to: 

.w /c (v)ɓ v out  
 
If current node has no outgoing edges (node is terminal, ) then  reward equal to(v)cout = 0  

remains “undistributed”.wɓ v  
 

1.2 Theoretical Reward Evaluation 
 
According to the reward distribution algorithm, on the condition that and don’t depend on the          Ŭ   ɓ      
wave index and nodes of waves are not terminal , the size of the reward distributed      , 2, ..,1  . i            
among the nodes of the waves is as shown in the Table I. 

 
TABLE I  

The size of the reward distributed among the nodes of the waves 

Number of the 
wave i  

 

Total reward of the 
nodes of the wave i  

Total transferred  reward 
of nodes of  the next 

waves 

1 zŬ  zɓ   



2 ɓzŬ  zɓ2  

w  ɓ zŬ wī1  zɓw  

 
In the general case the value of the parameter (and thus ) depends on the nodes types, that         Ŭ    ɓ        
are included in the set on a current step : let and - are the value of the coefficients     V 2        Ŭ1   ɓ1         Ŭ  
and on the odd wave of the algorithm ( ), and are the values of these ɓ         Ŭ1 + ɓ1 = 1  Ŭ2   ɓ2       
coefficients on the even wave of the algorithm ( ). Then the size of the reward        Ŭ2 + ɓ2 = 1        
distributed among the waves of the nodes are as shown in the Table II. 
 

 TABLE II 
The size of the reward distributed among the nodes of the waves ( = )Ŭ1 / Ŭ2  

Number of the 
wave i  

 

Total reward of the 
nodes of the wave i  

Total transferred  reward 
of nodes of  the next 

waves 

1 zŬ1  zɓ1   

2 ɓ zŬ2 1  ɓ zɓ2 1  

 oddw  zŬ (ɓ ɓ )1 2 1
(wī1)/2  ɓ zɓ2

(wī1)/2
1
(w+1)/2  

 evenw  ɓ ɓ zŬ2 2
(wī2)/2

1
w/2  ɓ ɓ ) z( 2 1

w/2  

 
Let us introduce the following definitions. 
A path is a sequence of the nodes , such as ., , .., ,v0 v1 . vpī1 vp , ) , i(viī1 vi ҽ E  = 1, p  
A length of the path is a number of edges that are included in it : .(v , , .., , ) l 0 v1 . vpī1 vp = p  
Let us assume that is a set of nodes, which have at least one path in the graph that    (k)V ְ V                
connects them to the node  .k   
Depth of the graph from the node is the length of the longest path of the form       k            , , .., ,k v1 . vpī1 vp  
where  .V (k)vp ҽ   
 
Since the number of network nodes is finite, then 

● the number of iterations of the BFS algorithm is finite too; 
● if the depth of the graph from the node is equal to , that means that the process is         k     p        

finished after performing  iterations;p  
● the total size of reward that the network nodes will receive is less than the original value ;z   
● starting from the node , the  bigger the depth of the graph the less the size ofk  

undistributed reward. 
 



Since , then this process of the reward distribution is damping. Tables III and, Ŭ , , , ,Ŭ  1 Ŭ2 ɓ ɓ1 ɓ2 < 1  
IV show the damping speed of the reward size of the wave nodes depending on the wave number 
(under the reward size fraction of   is assumed).z  
 

TABLE III 
Total fractions of reward of the wave nodes (  and  are not dependent on the wave number)Ŭ ɓ  

Algorithm parameters of the reward distribution 

Ŭ  0.1 0.25 0.5 0.75 0.9 

ɓ  0.9 0.75 0.5 0.25 0.1 

Number of the 
wave i  

 

Reward fraction which all the nodes of the wave  receivei   

1 0.1 0.25 0.5 0.75 0.9 

2 0.09 0.1875 0.25 0.1875 0.09 

3 0.081 0.140625 0.125 0.046875 0.009 

4 0.0729 0.10546875 0.0625 0.01171875 0.0009 

5 0.06561 0.07910156 0.03125 0.00292969 0.00009 

6 0.059049 0.05932617188 0.015625 0.000732421875 0.000009 

1,3,5,7,9 0.342800821 0.5392494202 0.666015625 0.7999992371 0.909090909 

2,4,6,8,10 0.3085207389 0.4044370651 0.3330078125 0.1999998093 0.0909090909 

 
Fig. 3 shows a dependency diagram of the reward share received by all nodes of the                

waves from 1 to 10 on the condition that  = = 0.5.Ŭ ɓ  
 



 
Figure 3. The share of the reward that all the nodes of the wave will receive  ,  i , , .., 0  i  = 1 2 . 1   

on the condition that  =  = 0,5Ŭ ɓ  
 

TABLE IV 
Total fractions of the reward of the wave nodes (  and  depend on the wave number)Ŭ ɓ  

Algorithm parameters of the reward distribution 

Ŭ /Ŭ   1 2  
 

0.8 / 0.1 0.7 / 0.2 0.6 / 0.3 0.7 / 0.4 

/ɓɓ1 2  0.2 / 0.9 0.3 / 0.8 0.4 / 0.7 0.3 / 0.6 

Number of 
the wave i  

Share of the node that all the nodes of the wave will receivei  

1 0.8 0.7 0.6 0.7 

2 0.02 0.06 0.12 0.12 

3 0.144 0.168 0.168 0.126 

4 0.0036 0.0144 0.0336 0.0216 

5 0.02592 0.04032 0.04704 0.02268 

6 0.000648 0.003456 0.009408 0.003888 

1, 3, 5, 7, 9 0.975425408 0.920319232 0.831899136 0.853497232 

2, 4, 6, 8, 10 0.024385635 0.078884506 0.166379827 0.146313811 

 
Fig. 4 shows a dependency diagram of the reward share received by all nodes of the waves from                  
1 to 10 on the condition that ..6,  Ŭ .3Ŭ1 = 0  2 = 0  
 



 
Figure 4. Share of the reward that all the nodes of the wave will receive   on the condition that,  i , 0  i  = 1 1

Ŭ , ,  Ŭ ,   1 = 0 6  2 = 0 3  
 
If the network functioned during cycles, then reward units were injected in it, on the     t    t Ā z          
condition that this value and reward amounts of the graph (which have at least one path  t Ÿ Ð                
that connects them at least to one node from the nodes of the set ) goes to infinity, too.              R      
Therefore, when it comes to the reward amount of a certain node, we should not talk about the                  
absolute value of its reward, but about its share of the total amount allocated for the reward. 

2 Network simulation 

2.1 The purpose of the simulation 
To determine how the parameters of the network affect the reward distribution, in other words, to                
determine how the reward amount received by one node is affected by: 

1) its degree (amount of the edges that are incident to the node); 
2) its type; 
3) network size (the number of edges and nodes). 

2.2 Description of the simulation algorithm 

2.2.1 Graph parameters 
The main graph parameters are [3]: 

● the network size ;n  
● network density .d  

 



The size of the subsets of the set depends on the . In order to set the size of the subsets        V    n           
 and  let us introduce the parameters  , that are defined by formulae,  A R  S , ,ɔ1 ɔ2 ɔ3  

● ;ɔ n]r = [ 1  
● ;n]a = [ɔ2  
●  ( );s = n ī r ī a n]s å [ɔ3  
● ;, ,  0 < ɔ1 ɔ2 ɔ3 < 1  
● .ɔ1 + ɔ2 + ɔ3 = 1  

 
The number of edges, that are incident to the nodes of the set depends on . Taking into account               d     
specific properties of the graph structure, it’s sufficient to talk only about the sets and . Let us             R   S    
assume that the number of the edges that are incident to each node of the set is equal to ,                R    h  
and the number of the edges that are incident to each node of the set is equal to . And let us                  m     
assume that , (the value reflects the relative degree of integration of the nodes of  hm = ŭ  ŭ > 0    ŭ            
the set into the graph in comparison with the nodes from ). Values and can be     S        R   h   m    
determined by knowing  and   (and vice versa).d ŭ   
 
Taking into account specific properties of the graph structure we obtain:  

.r s r hs (r s)E| | = h + m = h + ŭ = h + ŭ   
On the other hand, we obtain 

.dn(n )E| | = 1
2 ī 1  

Then                                                ,dn(n ) (r s)1
2 ī 1 = h + ŭ  

, h = 2(r+ŭs)
dn(nī1)  (1) 

.hm = ŭ  (2) 

If the parameters and are considered to be the primary ones, then they will define the   h   ŭ              
density of the graph: 

  .d = n(nī1)
2h(r+ŭs)  

Let’s estimate upper bound of . It will be achieved when every node of sets and is     d            R   S   
connected to every node of set (in this case  ):A ŭ = 1  

 

,d = n(nī1)
2h(r+ŭs) = n(nī1)

2a(r+s) = n(nī1)
2ɔ n(ɔ n+ɔ n)2 1 3 = nī1

2ɔ n(ɔ +ɔ )2 1 3  (3) 

.ɔ (ɔ )d = nī1
2ɔ n(ɔ +ɔ )2 1 3 < 2 2 1 + ɔ3  

 achieves its maximum value of 0.5 when   and  that isɔ (ɔ )2 2 1 + ɔ3 .5ɔ2 = 0 (ɔ ) .5 1 + ɔ3 = 0  
..5d < 0  

2.2.2 Generic algorithm of experimentation 
 
Parameters of the algorithm: , d, , , , ,  .n   ɔ1 ɔ2 ŭ Ŭ1 Ŭ2  



While the exit condition is not met 
// Defining the graph parameters 

 // the number of the nodes of the set  n]r = [ɔ1 R  
 // the number of the nodes of the set ɔ n]a = [ 2 A    

 //  the number of the nodes of the set r as = n ī  ī    S  
 // the approximate number of the edgesdn(n )]e = [ 2

1 ī 1  
// average number of edges that are incident to the node of the set              R

]h = [ e
(r+ŭs)   

// average number of edges that are incident to the node of the set S  
ŭh]m = [  

Generating the network graph using specified parameters 
Simulation 
Simulation data storage 

 
Exit condition from the cycle of the algorithm for performing experiments is the estimated values               
stabilization (e.g value average does not change with increasing the number of experiments (the              
number of simulation runs) [5]. 

2.2.3 Simulation 
Since on each cycle the node (from which reward units enter the system) is chosen uniformly       k   z         
at random from the set then under the cycle count each of these nodes will be chosen     R        t Ÿ Ð         
the same number of times ( ). Therefore, in order to estimate the reward amount (as a share     /rŸ t             
of the total amount allocated for the reward), obtained by each node, it is sufficient to activate                 
each node of the set  in the cycle once and define the reward of each node as a fraction of .R zr  
 
Estimation algorithm of the reward size of the network nodes: 
 
Reset the current reward values of the network nodes 
For each node of the set R  

Calculate the reward size for all nodes for  the current active node k ҽ R  
Add these values to the current reward values of the network nodes 

Record the simulation results in the resultant tables 

2.2.4 Saving simulation data 
Properties of the network nodes include: 

● type; 
● degree.  

The graph nodes are grouped according to these characteristics and the statistical data is              
collected for the groups of nodes. 



A node, which in the current run receives a reward equal to zero will be called a null node (this                    
means that for this node in the current structure of the graph there is no path connecting it to any                    
node of the set ; the node of the set can also be null, if there is no path that connects it with    R       R               
any other node of the set ). Only non null nodes are accounted in statistics .R  

2.3 Simulation results 
In the process of analyzing the proposed model of reward distribution, several series of              
experiments were performed with different values of the network parameters, starting with the             
analysis of a small sparse network (with 200 nodes and a density of 0.02), further increasing the                 
size and / or density. 
 
Each run of each series generates a graph with the given parameters . The            ,n  ,d  , , ,ɔ1 ɔ2 ɔ3 ŭ   
values of these parameters according to equations (1) and (2) determine the values of and ,               h   m  
which are taken as the average number of edges incident to each node of the set and ,                R   S  
respectively. When generating a random graph, the number of edges incident to the node of is               R   
a random variable uniformly distributed on the interval 
 

,hmin õ hmax   
where 

,axhmin = m {1; 2h  } ī a  
.inhmax = m {a; 2h  } ī 1  

 
Similarly, the range of possible values for the number of edges incident to the node of the set .S  
Note that in subgraphs that do not contain any nodes of type , none of the nodes receives a            R        
reward. Such nodes are not included in the statistics. 
 
In the beginning the simulation was performed on a graph with the following parameters: 

, .200, d 0.02n =   =  0.1, ɔ 0.1, 0.8 , 1,ɔ1 =   2 =  ɔ3 =  ŭ =   , , ŬŬ1 = 0 5  2 = 0   
 

The number of runs is 2000 and 20000. The charts of the dependence of the reward size on the                   
degree of the node are shown in Fig. 5 and 6. Here and further, the value of the reward is the                     
average % of the total amount of distributed reward. 
 



  

a) 2,000 runs b) 20,000 runs 

Figure 5. Dependence of the  reward size(%) on the degree of the  nodesR  
, , 200  n =  0.1, ɔ 0.1, ɔ 0.8 , ŭ 1  ɔ1 =   2 =   3 =   =  0.02  d =   

 

  
 

a) 2,000 runs b) 20,000 runs 

Figure 6. Dependence of the  reward size (%) on the degree of the  nodesS  
 , , 200  n =  0.1, 0.1, 0.8 , 1  ɔ1 =  ɔ2 =  ɔ3 =  ŭ =  0.02  d =   

 
Analysis of the charts in Fig. 5 and Fig. 6 show that: 

● the nodes of the set receive less reward than the nodes of the set (this is explained     R           S     
by the fact that in each simulation run the corresponding active node from does not             R    
receive a reward); 

● the charts for the nodes of the sets  and  are identical (this is explained by the fact thatR S  
in the considered series of simulations  = 1 and in the distribution of reward to the nodesŭ  
of these sets are equivalent). Therefore, further we shall consider charts only for nodes of 
the set ;S  

● for the nodes of these sets, an increase in the number of runs from 2000 to 20000                 
practically does not affect the accuracy of the results (differing appear in the fourth decimal               
place). 



 
Dependence of reward size on the  set node degree is shown in the Fig. 7A  

 
Figure 7. Dependence of the  reward size (%) of the  nodes on the node degreeA  

, , 200  n =  0.1, 0.1, 0.8 , 1  ɔ1 =  ɔ2 =  ɔ3 =  ŭ =  0.02  d =   
(i) 2,000 runs 

 (ii) 20,000 runs 
Reward fluctuations at the beginning and end of the charts in Fig. 7 are due to the fact that nodes                    
of type with high and low degrees in these series of runs were rare. This is confirmed by the  A                   
results shown in Fig. 8. On the charts the degrees of the -type nodes are shown along the            A       
abscissa and the ordinate is the number of times the node of the corresponding degree was                
encountered in 2000 runs (Fig. 9a) and 20000 runs (Fig. 9b). This entailed the fact that the                 
average reward values of the nodes with these extreme values of degrees did not reach a                
stabilized value. The smoothing interval of the chart(i) in Fig. 7 is wider than in the chart (ii). This                   
is due to the fact that in the calculation of the average reward, the number of nodes of the                   
corresponding degrees in the second case is much higher. Therefore, the corresponding average             
reward values are closer to their expected value. Note that increasing the number of runs does                
not change the trend of the dependence of the reward on the node degree. 

 
а)  2,000 runs 

 
b)  20,000 runs 

Figure 8. The number of times that nodes of different degrees were encountered in runs 



 
 

According to (3) with such parameters of the network graph          0.1, ɔ 0.1, ɔ 0.8 , ŭ 1ɔ1 =   2 =   3 =   =   
the maximum possible density is 0.1809045. Table V shows the simulation results for    dmax   å         
graph density values from to (in each case, the number of runs is 2,000).    0.04d =    0.17 d =            
These results show  the influence of the node degree on their reward. 
 
 

TABLE V 
The simulation results for graph  and variable density200  n =   

d  S  A  

.040  

  

.050  

  

.060  

  



.080  

  

.100  

  

.120  

  

.140  

  
 



.150  

  

.160  

  

.170  

  

 
 
The results presented in Table V for the nodes of the sets (and, respectively, ) are quite            S    R    
unexpected - for some values of the graph density, the dependence of the reward on the node                 
degree on some sections is a concave down function (some sections of the graph have an                
S-shaped form). We explain them in the following way. In systems of the considered dimension               
and the density of the graph from to there is a "lens effect": when the reward       .3d0 max  0.5dmax          
stream joins one of the nodes . At the same time, a node having a small number of connections                   
can receive a reward much higher than the reward of nodes having more connections. Thus, on                
the graph of Fig. 9 the node (with degree 1) will receive a larger reward than the node (with       s*             s**   
degree 3). The same example shows that not always a higher wave index leads to less reward. 
 



Results of the experiments (Table V) show that the dependence of the reward of the set nodes               A    
are close to linear, while the slope of the line decreases with increasing graph density. As the                 
density of the graph approaches , the probability of this node becoming a "lens" decreases     dmax           
with increasing degree of the node. This explains one more feature in the distribution of the                
reward: for the nodes of the set at densities close to , the angular coefficient becomes       A      dmax      
negative. This means that there is an inverse dependence of the reward on the degree of the                 
node - as the degree of the node increases, its reward decrease. 
 
 

 

 
Figure 9. An example of the structure of a graph that leads to the “lens” effect 

 
The results of the experiments presented in Table V and an analysis of the structure of generated 

graphs of size showed that for densities  for nodes of 00 n = 2 0; d ) ( d ; d )dҽ (  3
1

max ∪
 

 
2
1

max  max S  

and  of all degrees, the lens effect arises approximately equiprobable. This leads to a practicallyR  
linear dependence of the reward on the degree of such nodes . 
 
Fig. 10 shows the results of experiments on graphs with parameters  0.1, 0.1,ɔ1 =  ɔ2 =  0.8 ,ɔ3 =   

 and dimensions from 200 to 10,000, showing at what densities the S-shaped dependence1ŭ =   
of the reward on the  and  sets nodes degree occurs with increasing .S R n  
 
 
 




